
_:.: , Pelmmry 14, 1983 LIDS-P- 1281
-' To be Iutnnttted to mills Tmolm_tlons on AeroIimtlo and BloctronJc SyItems

21
:'_ A Bayesian Approach to the Desilln of Decision Rules

tot

", (_ Failure Detection and Identifleation e

_:. _ Lh,_d 7/.Chow ,

--: IUdldold, CT 06877

:::: e_ TeL (203) 4_1-.5419

.. Ain $.WWs_

_o

:.- Laboratoryfor hlformition and Decision Systems
-i_ MsII_husettsInstituteof Technology

CambridIe, MA 02139
1'ol. (617) 2S3-_356

,--;.

\
-_.,' _ Abs_aot

-:: deamon problem provides a simple conceptualization of the
- decision rule desip problem. As the optimal _yu _le b not ec,mpu_ble0 a

methodology that is based on the Bayesian apProach and aimed at a reduced
-:. computational requirement is developed for desilaln8 Iuboptimal rules. A numerical
.._ alIorithm is constructed to facilitate the desiIn and performance evaluation of these

=-. suboptimal rules. The result of epplyJnI this deslsn methodology to an example

_---| _ IhowI that this approachis potentially a useful one,e _ ......

.. _ jX _i__q mA'x'_Jum_--A I" _ _m:u_stloaU_ted I'' _ I I I I II

q

_ ,. _ " This work was supported In part by the Once ofNaval Research under Contract
_ No. N00014-77-C-0224 and in part by NASA Ames Research Center under Grant

': No. NGL-22-009-124/

1983023131



_.J I- °

. , .. m me

L.'_

_ I. INTRODUCTION

_- A falluro detection and identification (FDI) process cona/m of two basic stt,zes :
f,
.'. residual |aneration and decision makins. In the _.,st staBe, sensor outputs are

j processed to form residuals that typically have distinct characteristicsunder normal
',_. (no-fail) conditions and under the varlons pouible f_ures medea. (See 111_r a
3.

., discussion of the design of residual gnneration processes.) The function of the second

,) mgn b to monitor the resld_ and make decisions con_8 the o_n'e_ and

_" identity of failure modes. The decision mechanism is based on a compromise smon8

i_ speed of detection, false alarm rates, and ldentlllcation accuracy, and it balonzs to the

--i extensively studied class of sequential tests or sequential decision rules [2-15]. Most
•j. ,

_ previous works, however, were focussed on either the detection of a single type of

Jm _Se (failure) [5-9], or the sequential testing of M hypothesis, which is analolons to

:;. the problem of idantifyinj the failure mode given the onset time is known [12-14]. In

"-: this paper, we employ the Bayesian approach to the design of decision rules that

2: db'ectly coqfront the lroblem of detocdnt and ¢llst#nguishln_the various l_s_Ibl¢ /allure

='. modes whfchmay occurat unknown fmse_

In Section 2 we describe the Bayes formulation of the FDI decision problem.
._)

;2i Although the optimal ru)e is 8aneraUy not computable the structure of the Bayesian
--ue_'

:_ approach can be used to derive practicalsuboptimal rules. The desip of suboptimal

," rules based on the Bayes formulation is discussed in Section 3. The f,pproxims tons

_ and simplifications that are made in order to obtain these rules make systematic _se of
t

..... the important feature_ specific to the problem of dynamic failure detection and

consequently allow us to interprete_h step in our simplification procedure in terms of



,_._ ell e8 I

if-i Its hnplicatlons for failure detection. In Section 4 we report on our experience with

,!_.- this approwh to desipin8 derision rules through a numerical example and simulation.
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!:_" S. THB BAYBSIAN APPROACH

In this section we adapt and specialize the standard Bsyes Sequentisd Decision

• Problem (BSDP) [15] to the problem of failure detection. The BSDP formulation of

i_ the FDI problem consists of six elements:

1. • : the set of states of nature or failure hypotheses. For simplicity in this

development we assume that only sin816 failure8 may occur. In general an

..: element J of d conveys several pieces of information, namely, the type of failure

mode, its time of occurrence, and probably a variable specifying the severity of

;_ the failure. For enmple, if a particularfailure mode corresponds to the onset of

a sensor bJ_, the level of this bias could be specified in the corresponding

element of #. In many applications, however, it sufncas simply to identify the
:J

• failure type without estimatinf its severity. Furthermore, what is often done to

eliminate this nuisance parametercompletely is to hypothe,-ize a fixed scale for

each failure type correspondin8 to the smallest deviation from normal behavior

that one would like to detect. For example, this approach was used with jroat

success for the detection of aircraft sensor failure in [16]. We will adapt this

' approach here, and consequently elements of _ are 2-tuples, 0-(i,_),

corrospondinj to the onset of the |th failure mode at time _. We assume that

'.] there are M hypothsized failure modes and also denote by (0,-) that element of O

correspondins to no failure. Thus,

i-l,...M, ,,-],2,...} u t(o,-)l
'j

2. eA: the prior probabilitymass function (PMF) over the nature set ®. This Pb4F

1983023131-TSA06
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" represents the a priori information concerninll possible failures, I.e. how likely It is

',_ for etch type of failure to occur, end when is a failure likely to occur. Because

Si
_. this information may not be available or accurate In some cues, the need to
e",

i_ specify p b a drawback of the Baye8 approach for such cues. Nevertheless, we

will see that it can be reprded u, desip Imrmmeter in the specification of the

: Bayes rule.
,.. o'

,... In |eneral, _, may be arbitrary. Here, we assume the underlying failure

process hu two properties: 1) the occurrence of each of the M failure modes is

_._qj independent of the other, end 2) the occurrence of each fMlur_ i is a Bernoulli

process with (success) parameter Pi, a common model for fMlure s in physical

components. The independent usumption is also a reasonable one in most

applications. It is straiflhtJ'orwardto show that

' p(i,_)-a(i)p(l-o) "-t i- I,...,M, 1,2...

i-_ where

p - 1- l-pj)
" |-I

JM _l 1-t

'-', a(i) - pj(l-pi)-tI_pj(l-pj) l

The parameter p may be resarded as the parameter of the combined (Bernoulli)

fMlure process which specifies the statistics of the occurrence of the first failure;

a(i) can be interpreted is the marflinsl probability that the first failure is of type i.

Note that the present choice of/_ indicates that the arrival of the first failure is

memoryless.

1983023131-TSA07
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', 1. blk) : The dh_rete set of terminal decisions available to the decision maker when

.i_ the rulduJl.monltorln| is interrupted at time k In order to make failure

;;, ld_nUll_on. An aloment 8 of D(k) mey denote the _r (l,t), I.e. the
7,

_ declarstion of a type I failure to have occurred st time te_k. Alternatively, 8 may
I)_" represent an ldentilce0on of'the J._hfailure without rejard for the failure time, or

_?_ It may slpify the presence of a failure without specifyin8 Its type or time, I.e.

simpl7 an alarm. Note that the number of terminal decisions 8pecifyin$ failure

.:,.. times 8row with k (as there are more times at whlo.h a failure could have

: Lt. e"

: o.,_ occurred) while the number of decisions not specifyinl times will rem_.,_ the

_ _-" same. In addition, D(k) does not include the dec!aretlon of no.failure0 since the
,_.:_

_ residual monltorin| is stopped only when a failure appearsto have occurred. It is

_ worth pointing out that in some application one may not be interested in

'_" _stimatin| failure onset times, there are others In which one is. For example, if a

_"" failed sensor has been used for sometime in a closed-loop filter and control law,

i!:i:i one may wish to estimate how Ion| the failure has been present in order to

,_: compensate for the effect of' this erroneous slsnal. In addition, onset time

-,_ estimates are critical in other event detection problems such as electrocardlo|ram

_: analysis [171and maneuver detection [18,191.

4. L(k;_,8) the terminal decision cost function at time. _. L(k;0,8) denotes the

, penalty for decidin$ 8_ D(k) at time k when the true _tate of nature is _. It is
i '

'_}:! usumed to be bounded and non-neeat_.veand _tve the structure :

_':. L(k;e,a) - lip, _'>k, 8_ D(k)

_:|

1983023131-TSA08
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' L(k;(O,-),a)-

where L((l,f),a)Isthe underlying cost function for deciding 8 when failure (i,_)

• ' has already occurred. Also, L1,denotes the penalty for a false alarm (note that a

false alarm corresponds to makin| t failL_redeclaration before one occurs), and it

can be 8enerallzed by allowin8 It to be a function of 8.

The cost function L((i,_),8) 8enerally has some additional structure. For
i_ example, a terminal decision cost thsl indicates the correct failure (and/or onset

-_" time) should receive 8 lower cost then one with the wrens failure (and/or onset

"_ time) indication. We further assume that the penalty due to an incorrect
+

" identification of the failure time is only dependent on the error in such an

identUlcation. That is for 8- (j,t),

t.(k (I,,),(j,t))- t.(i ,j, (t-r))

-'_' Note that L(J,i,(t-r)) corresponds to the penalty for an incorrect time estimate of i

when the failure type is correctly determined. Aaain the use and importance of

this cost depends upon the application. Finally, if onset time is unimportant, so

_i_ that 8 does not obtain a time specification, we have

L((i,v),8) - L(i,8)

$. l(k) : the m-dimensional residual (observation) sequence. We shall let

p(r(l),...r(k)J i,_) denote their joint conditional density when (i,_) is true. Since

the residual is affected by the failure in a c_usal manner, its conditional density
_IP

his the property

1983023131-TSA09



•_ p(r(l),...,r(k)ii,_')-p(r(l),...,r(k)JO,-), i-l,...,M, _>k

In this paper, we will assume that the residual is an independent GaussJan

" sequencewith V (mxm matrix) as the time.independent covarlance function and
;:

_-_ 81(k-_') u the mean llivon that the failure (l,_r) hu occurred. With the

: covarlance assumed to be the same for all failuru, the mean function fk(k-_)

characterizes the e_ect of the failure (i,f), and it is henceforth called the

_. all!natures of (i,_) (with 8j(k-_) - 0 for i-0, or f _ k). We have chosen to study

this type of residuals because its special structure faciJitates the development of

_-_ insiahts into the the desip of decision rules. Such a model arises in the cue in

which the residuals are llenerated by a Kalman filter based on normal operation

an6 in whicl_ the failure enter edditively in the system dynamics or sensor outputs

[20]. While this model is not correct ff parametric failure are considered (since in

this ca_e the correlation structure of the residuals is also affected by the failure),

i-_ the lleneral concepts we develop for the formulation of a BSDP for failure

detection carry over to the parametric case. Furthermore, as reported in [16,211,

an FDI system based on an appropriate edditive-failure model can often work

very. well in detectin8 parametric failures.

6. c(k_(i,_r)) : the delay cost function havinJ the properties:

I c(l.k-_) >0. _<kc(k.(i._)) - O. _i,k

:--_ c(i,kl-_') > c(i,k2-1'), kl >k2>1'

After a failure has occurred at time v, there is a penalty for delayin8 the terminal

1983023131-TSA10
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_ decision until time t;_5, with the penalty an increuinj function of the debty

;_ (k-5"). In the ab_nce of a failure, no penalty is Jmpos,Jd on residual sampli_|.

:". In this paper we will consider a delay cost :unction that Js linear in the delay, i.e.

-'_3_, c(i,k-_)-c(i)lk-_), where cO) is a positive function of the failure type 1, and

i may be used to provide different delay penalty for different types of hdinr_:_.

A sequential decision rule naturally consists of two parts : a st_ppin$ rule
:;: (semplJn8 plan) and a terminal decision rule. The stoppin8 rule is essentially a
'f-

i;.. detection rule as its purpose is to determine whether mouitorin8 should be interrupted
',, o

,_._. In order to identify a failure. The terminal decision rule then performs thc subsequent

_--" identification. The stoppinj rule denoted by

'_" @- (_ (0) ,_ (l;r(l)),...,_, (k;r(l) ,...,r(k)) ,...) is a sequence of functions of the observed

residual samples, with ¢(k;x(1),...,rOc))-I or O. When _(k;r(1),...,r(k))-I (0),

_, residual-monitorinf_ or 8amplin$ is interrupted (continue_,) flier the k-th residual

_ sample, r(k), is observed. Alternatively, the stoppin$ rule mey be defined by anothez

sequence of functions qt, (_ (0),_ (l;r(1)),...,_ (k;r(1),...,r(k)),...), where

_ _(k,r(l),...r(k))- 1 indicates that residual-monitorins has not b®en interrupted up to

and includins time (k-l) but will be interrupted when residual samples r(l) ,...j, (k) are

,_', observed [151. The functions @ and _P are related to cach other in the following way '

....4 k-n
O(k;r(l),...r(k)) -_(k;r(l),...,r(k)) 11 [l-_(r(l),...,r(s))], k;_l

*-0

witht(O)-

The terminal decision rule is a sequence of functions,

: D-(d(O),d(l;r(l)),...,d(k;r(l),...,r(k)),...). The function d(k;r(l),...r(k)) maps the

1983023131-TSA11
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It/h

./,' n,_tlid'0_alsamples r(l),...,r(k) into the terminal decision qet /)(k) and represent_jthe

_f(t_ deL;t,.;onrule used to arrive at a fsilura identification if samplln| is interruptedtt time
.%

i,: k.
i'.,

_',t_ :,',]'¢.,_) iS lhe true state of nature snd if'the sequential decision rule 14,,D) is used,

i then the totedexpected cost, i.e. the expectation of'the sum of' the delay end terminal
,/
_ decision costs is
I

,!:_: UI(i,f),(@,D)]- _, Et,,10(k;r(1),...,r(k)) [c(k,(l,,)) + L(k;(i,rl,d(k;r(1),...,r(k))) 11
,. " k-0

.;i_ where Et,, denotes the e_pectation 8iven that (i,_) is true. The Bayes Sequential

,:_:: Decision Rule (BSDR) with respect to _ is defined to be the sequential decision rule

il-_ (@',D') that minimizes the sequential Bayes risk Us(@,D) which is f0ven by

i- U,(@,D) - E {U[(I,_'),(,I:,D)]}

_,_ - _ (i,_')U[(i,1'),14,,D) ]
_-_,_.

'_" Now we discuss an interpretation of the sequential Bayes risk for the FDI problem.

:_I,, Let us define the followin8 notation

!::.'. Pp(_) - Eo_ 10(k;r(1),...,r(k))}
;; k-I

_i _ _

t

" k-0

!l S(k,8)- [[r(1},...,r(k)]: 0(k;r(1),...,r(k))-I d(k;r(1),...,r(k))-a}, 8¢D

'_ " .... ' ............. ...... 1983023131-TSA12
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Pr(§(k,8)li,_}- f p(rO),..,r(k)lio_')dr(l),...odr(k)

_A

t(l,_)- _ (k-_)(n-ep(_))-nF_,, l@(k;r(1),...,r(k))}
k"_'

P((i,f),8)-(l-P_O.)) -a _ Prl_(k,8)ll,,}
le..t

wherePF(_.)is the probabilityof stoppingto declasea failurebeforethe failureoccun

at _, i.e. the probabilityof false alarm when a failure occurs it time • or later. D is

tt,e set of terminal decisions for iH times. S(k,8) is the region in the umple space of

-_ the first k residuals where the sequential rule (@,D) yields the terminal decision 8.

Clearly, the S(k,8)'s are dlsjoin_,sets with respect to both k and 8. The expresaion_

_..
._ i(i,_) and P((i,_),8) are resp_.ttvely the conditional expected delay and the

conditional probability of declaring 6, siren a type i failure has occurred a; time • and

no false alarm has been signalled before this time. P((i,f),8) is called the generdzed

cross-detection probability. Using these quantiti,,s the sequential Bayes risk can be

writtenas

Us(@,D)-- _ ,_/s(i,_')lLpPF(_')+(l-Pp(,))[c(i)_(i,_')+ _ L((i,,),8)P((i,,),8)]}
_-n ,-n ace (1)

Equation (l) indicates that the sequential Bayes risk is a weighted combination of

the conditional false alarm probability, expected delay to decision and cross-detection

probabilities, and the optimal sequential rule (@',D') minimizes such a combination.

From this vantage point, the cost functions (L and c) and the prior distribution (j_)

act 8.5the weighting coefficients and hence serve as a basis for specifying the tradeoff

relationships among the various performance issues. The advantage of this approach

1983023131-TSA13
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_s that only the total expected cost io_tead of every individual _rformance/;sue n,_,t_

'_i;_! to hi co_,sklered explicitly in designing a sequential rule. The drawback, however, lies

. in the need to choose a set of appropriate cost functions (and the prior distribution)
*/

i;._i when the physical problem does not have a natural set, as it doesn't in general. In

this ca_e, the Bay©s approach ts most useful with the cost functions and the prior

distribution considered as design parameters that me/ be , '!usted to obtaip an

acceptable degigJ_.

The optimal terminal decision r_", ,an _,e easily sbown to be a s_quenco of

....el fixed-sample-size tests [15]. The deterraination of the optimal stopping rule @"is a
-I

dynamic programming problem [22]. The immense stmege _ed computation required
•. -%.

make @"impossible to compute, and suboptimal rules must be used.

De, pits the impractical nature of its solution, the BSDP provides a useful

framework for designing suboptimal decision rules for the FDI problem because of its

/_ inherent characteristic of explicitly weighing the tradeoffs between detection speed and

accuracy (in terms of it_ cost structure). A sequential decision rule specifies a set of

sequential decision regions S(k,8), and the decision regions corresponding to the

BSDR yields the minimum risk. From this vautage point, the design of a sub,optimal

rule can be viewed as the problem of choosing a set of decision region5 that would

e yield a reasonably small risk. This is the essence of the approach to suboptimal rule

design that we take in this paper and describe next.

qJ
• 4

Q

• " t ,J 'J v *_ . " '

1983023131-TSA14
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8. DMOIGH01PSUBOPTIMAL RULB8

-_" LI 8ubopamsl Rubs ]hund on tJJoWJDR

The $lWls#VindowAl_rox_a_n

The immense computation associated with the BSDR is partlyduo to the incressin8

_.. number of poulble hdlure times that must be considered u time prosresses. The

remedy for this problem is the use of a 81idin8window to limit the number of failure
tmq

_- onset times to be considered at each time. The assumption made under the sJldin8

- window approximation 15 that ementhdJydl f_dures am be dete_tod within W time

steps after they have occurred, or that if a f_dlureis not detected within this time it

will not be detected in the future. Here, the window size W is a desijn _eter,

-_ and it should be be chosen Ions enoush so that detection and identification of failures

are possible, but short enoush so that implementation is feasible [22].

The 8Udinswindowrule(OW,Dw) divides the wnple space of the sUdinSwindow

of _lduals r(k-W+l),...,r(k), or equivalently, the space of vectors of pomeior

probabilities, likelihood ratios, or los likelihood ratios of the sliding window of fJktre

hypotheses into disjoint time-independent sequent! decl_on vqfons S0,Sn,._. Here,

N-M if no failure time indication is involved in the terminal decision, wbflelq"MW

if 8 failure time estimate is also required. Because the r_Jiduals ere umm_d to be

Gnssian variables with variances that do not depend on the hypothesis, it is e_jr to

check that an oqulwlent set of sub©lent statistics is siren by [20,23]

A(k)- [A'o(k),...,A'w=n(k)]'

where for 0eE_W-I

. , . . k , • , , , , , ,

1983023131-TSB01
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:_,._' A,r(k) .. [l (k;l,o'),...,l (k;M,a')1'

l-_i' L'

,-,_,% A (l';Ioe) -- l'l(elV"lr(ll:- o"l'l)
!-.,-;; tmO. o 0

!i_ Here e Indexes the possible failure onset times measured relative to the preeent time
;-:':" k (i.e. • correlpond8 to a failure emmaat time k-el. The Oantities A(k;i,u) diffar

,-...., only by an unimportant constant from the lea-likelihood retie8 for es_h hypothesis

-- follows. At each time k_W, we form the decision statistic8 A(k) from the window of

_ residual samples. If A(k)E,% for i-1,...,N, we stop samplinl to declare 8_;otherwise,
n-m._

-:. A (k)E SOand we procsed without makinl any immediate deckion. The Baye8 deslp
I_ o-

i **

-'- problem is to determine i set of rqions o0,on,...,._t_that minimizes the correspondinl

ii_ sequential risk uW({si})(the ,xpresMon for which w. win describe ,hortly). This

"-: represents a fun_tionel minimization problem that is |enerally very dimcult to solve.

'-,,_ A simplification of this problem is to constrain the decision reltOns to take on special

2:" shapes, Si(I'), that are porameterized by a fixed dimensional vector f of deslln
,..'*

..'. variables. A typical choice for these parametrically.specifiedrealons milht be in

',_ terms of the relative orderinj of the sizes of the L(k;i,_) and a 8at of threshold levels

i%; which correspond to the components of f (see (31 below). While quch 8 constrained
,,-q,

!_ structure will lead to a suboptimal solution, the difference between the performance

• resultinll from usinll the best constrained solution end that achieved by the optimal
• x

. will be smell If the constrained structure Is chosen carefully. Furthermore, it is our

,_ contention that this performance difference wIHtypicallybe mostly an artifact of the

:: idealized problem formulation rather than a reality. That is, the unconstrained

.i
IL'

" 1983023131-TSB02



i_ problem seeks to find the beet boundaries 'be•wean deeblon rell/Ons, while the9
J"

_i_ eonatrained problem Axes the boundary shapes (e.|. atralsht lines of poly|onal

,_, boundet,tu). Oivan that the _tdud _llcal model used to do_o the problem 18

• ,' subJeeted to error, the extra drop of performance resaltin8 from bein8 able to *fine

,:_! rue" the boundary shapes wilJ 8anerally be dwarfed In the ueertainty arbin8 from
/.

": modelin|°_ errorS.
-1

_I In the remainder of this paper we focus our attention on a special set of
_eto¢_ed s_enflal d_n n_lto_, __ they autosimple and they Mn, e well

t. to illustrate that the Bayes formulation can be exploited, in • system•tie fashion, to

:! obtain simple suboptimal rules that are capable of deliverin| |ood performanee.

:: These decision regions are:..,

$(j,t) - [ A(k):A (k_j,t) > f(j,t),i-:

_" e-l(j,t)lAlk_,t)-f(j,t)] > e"l(l,s)lA (k;i,s)-f(i,s)], (l,s)pt(j,t) }

_. S(O,-) - i A(k): A(k;i,s) < f(i,s), I-I,...,M, s-O,...,W-I }

where S(j,t) is the stop.to.deelare.(j,k.t) re|ion and S(0,-) ts the continue reslon..See

,_ lqlure 1 for • pictorial repre_ntaflon of the structure of 13) in the case where there

_C are only two failure hypothesized failure (j,k.t) and (i,k-s).. Generally, the _'s may

_" be regardedas _.eslgn parameterS,but here, e(j,t) hi limply takan to be the standard
:. _

i deviationofA(k_j,t).

"I"

_'_ To evaluate uW(f), the Bayes risk due to the use of (_), we need to determine the
A"

i; set of probabUitI_, PrlA(k)([S(j,0,A(k-I)_S(0,-),...,A(W)_S(0,-)JI,_}, k_W,_"
t'.
' J-I,...,M, •-0,...,W-l, which, indeed, 18the load of many research e_orts in so-called

I
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leveI-Groasin8problems _24]. As It stands, each of the probehjUtleshi an intejral of a

::_ kMW-dimemdomd Oeujshut density over the compound refllon

S(0,-)x ... xS(0,-)xSQ,t), which, for lerao kMW, becomes e_remely unwieldy

and dlmcult to evaluate. K variety of approximations end bonds [2s.28]have been

developed for the evaluation of qmmtities such u this. We have not investiaatod the

utility of any of throe for our problem but rather bt_ve developed • systematic

approach which hi porti__erly appropriatefor the dynamic FDI problem and which

8reat_ simplifies the requiredadnletions.

_3 As t Am step in this process, we reduce the dimension of the decision statistic

A(k) from MW to M. $pocifleJdly,we will base our decision proeeas solel7 on the

values of the log-likelihood reties fur each of the M failures modes assumin8 an onset

time _ly at ¢-W-1, i.e. the beainnins of ,_e window. Since we ere not

estimatinS failure time in this case, the terminal decision to be made Is simply the

idantincation of the failure modes. The rational behind this simplification has several

aspects. First, in many applications, such as the aircraftsensor FDI problem [16] and

the detection of freeway incidents [21],where the failure time need not be explicitly

identifies, the hdlura time resolution power provided by the full window of decision

statistic8 is not needed. Furthermore, even if failure onset time information is

desired, resolution of tbhi time within a block of len|th W may often be sufl_cian.t. If

not, one can imajine a two.level decision-ruskin| structure in which one first

determines the failure type (usln| the procedure to be described) and then estimate

the onset time. Note that this overaU system will have decidedly lower complicity

than one based on simultaneous detection, identification and onset time estimation.
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+ Is mmminl the utility of the approach Just described one our. make sure that the

-*_ resultinll decision 8dlorithm doom not have a sllnUlanll7 elevated probability of

"" ° Incorrectlyldentlfyin8 the tslture type. That Is, It a fidluro of type i occrl at • thno_.o,

"; before the end of the window -nd it s detection occurs, one would wut the

-. subsequent ldentlbstlon to also be I with Idflb probability. Detorminin8 whather this
+/..

is the cue con be done completely in terms of the teiluro dpstures [29]. We am

+_ expect pod pertormsnco It crom-correletionatonal sJlmturu for failures of the sane

= +; type at dMerent times are sllniflamtly hilher then the crew.correlations of silnstutes

"+ correspondlnll to dMerent failure types. We nolo that this is often the case in practice,
_dltl

and in tact an often-used soel for the res_utl |_nerstlon pro_P/,+Is that of producinl

sisnstures which ere ortholoml or which at le_,t lie in trivially overleppinj subspeces

_. [1,221.

+ A decision rule of the 1typejust dow.ldbedconsists of' sequenUsl decision resions
+

that are similar to (3) but are _uly defined in terms of the M components
+++'"+ A(k;i,W- 1), i-I,...,M:
d,,=,;

£. Aw_,(k)- [A(k_],W- 1),A(_;2,W-1),...,A(k_M,W-1)]'
_+ (41)

Si - { Aw_t(k): A(k_J,W-I) > f_,

_' .-t(j,W-I)[A(k;J,W-I)-tj] > .-1(i,W-l)|A(k;i,W-l)-ti], j,di}
(4b)

So - ( Aw-_(k): A(k_j,W-I) _ tj, J-I,...M }
(4,:)

-Q where S: is the stop-to-declere-j relion and S0 lJ the continue rellon.

The rbk for usinl (4) is

.....................+.............+.......................................+......................................++:.........................+i............i ++++?.........+++:++++i.............._i++I++Yi_++,_........+++-.......+++++,++++

,. -... +_.+,,.: ...... _++,+,+:'_+,+++..+u+++__++ +.:+...... - ....... _:- .... + +- +.+"+. - +-.+ + .......... - ....................
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ii_ I-I _,-W+I ll-W J.-I

,'., + Z _O.,) Z I¢(IIlk-_'I+LliJIIIPrIAw_nlkIESj,ile(k-I)II,,I
l-le,=l k-mez_,el

,.:. whore 8o b tho evont dollnod blow:

o

"" Ib(k) - I Aw-n(kl_S., Aw-n(Wl_Se}

',;4
?: The d=utterm in tho oxmlon for Uw(tf) reprueo_ts tho portion of tho risk duo to

_i_:.' fainalan.. The key oxpni_on borgb PrlAw_n(k)_$l,_lk-l)lO,-),whlchistho

'_. probabmtythat no d_hletions have been made before time k but that an Identification

i':o
I_. fora typej fallm ismade a timek, liventhatno failurehas o_urred.The

-_ remalnlnsportionofUw(f)relm_ntlthatpartofthorisk_orrmpondlnstodetection

,,_,, delay mud the poeslbmty of hmosl_ct ldentiOaflon. Hore the key quantity hi the

_' probability PrlAw_t(klES_,8,jlk-llJl,_) , which Is the probabilitl_ that a detection is

_ first made at time k and that the failure is ldont_od as hein8 of type j Oven that •
_:

_-: type 1 failure occurred at time _k. The calculation of the8o probabilities 188poci_od

_', by the fogowin 8 focurslou:

_.,.. PrlAw__ (k+l) _S_ISo(k) ,1,_.1

i'.

,- . [ p(Aw_n(k)iBo(k_l),l,_.)dAw_n(k ) ]-n x
-,e_

,?. P(Aw-n (k+ Ill Aw-I (k), Bo(k- l),i,_ )P(Aw-t (k)I ilo(k- 1),1,_) dAw_ 1(k),

" k > w ($)
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_* PrlAw_n(k)ES_,llo(k_n)i1,_)

-. -..Prlie (k- 1) JO,-}J-P(Aw_l(k) JfJo(k-l),l,_)dAw_n (k), J-I,o..,M
+dh

fi l'rlAv.n(W)ESjll,e}- p(Aw.n(W)II,e)dAw-n(W)
_+: (7)

Noto that in Nsenco what wo sro csk:ulatbt8on (5).(7) are severeddMorent level

crotsin8 probabilities, and u wo bavo just shown, it is those adcuhiGo.-,ithat aro the

:, conlmlolements to ba detormiaed tn ovaduaton8the porforlmmcoof an hypothesized

dot_--tion rule. For M small, numorical ontelration of ($)-(7A bamomemmensllseblo

emumin8 that tho required Intolrends are available.

Unfortunataly, tho transition density, p(Aw_t(k �\�è�Aw_n(k),So(k-1),l,_r),

roquired on ($) is dinlcult to calculate, because Aw_1(k) is not a Markov procou. Ix,

order to facilitate the computation of these probabUitles,we use an approximation for

this transition density obtained by developinS am approximate Mtrkovlen model for

the evolution of bw_ 1(k). A simple, but quite useful approximation is am am M-

dimensional Gause-Markov process/(k) that is defined by

gk+1) - A l{k)+ _(k+1)
(Sa)

coy IC(k)C'(t)} - r llt,t (lb)

whore A Is an MxM constant matrix, and _ is a whlto Oauutan sequence (with

covarience oqual to the (ldxM) mattrJxF) uncorrelated with gk). The conditional

moon of l;(k) will be spocifled shortly. The reMon for ©boosinl this model is twofold.



. " ,. _ _ "+ ".o " . + "°" '+ _+* +_" _++ "+° .' ".+++." _.' "_+ _* _. ",- q+'++°-'._-'. .' ". + Z" ." +" "-'°P ""_"*_+ +', ". " +* ,,'_ ', .'4 ' ° ", "- +*_ "_
%

fJ_L.

PJrst,justu AW_ I(k),l(k)hlOanwian. Second, Kk) hiMarkov so thatItltransition

+_ densitycan be readilydetermined. In orderto have the evolution of gk) matchthat

Ot AW_ I (k) as closely 18 possible, we choose the matdc_ A and r andthe conditional

mean El,,[C(k)}of COc)underthe hypothesis (1,_)so that

14,,l+(k)l-
(h)

E0,-[/(k)l'(k))- IEe,-[Aw-I(k)A'w_l(k))+. (gh)

+. _ ..l_k)r(k �”l_,_IAw_l(k)A'w_1(k ��$�$�.

l'_at is, we have matched the marllnaldensity and the one4tep cross-covarlanceof

/(k) to those of Aw-t (k). A straishtforwardcalculationshows that (8)-(10) uniquely

": specify

A - Z'n_-,
(1o,)

(lOb)

lP,i,,|C(k+l)) - Fq,,IAw_I(k+I)} - AEi.,IAw-I(k)}
(1oc)

where

_1 " RO,--[Aw-I(k)A'w-I (k)) "W_lot V-IG't
t-O

][I-- Mq),-IAw-I(k)A'w-I(k'l'l)|"W_2O* ���V"IG'I
1-0

• + + . . _............... =........... =-++-.- +-_ .................. _-: ...... , ........... ++::=:=::-Y_ .... _ _=._+ ,+-+.:1:=+_::=_= _:_=-_-+::=.+:+ :: : : ,.+ ;._:+.: _ . :..+_ .... + .- +
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_,'; O. t' > k

_-... EI,,IAw.I(kI} - _O,..i,V"l&(t), ke-k-W+l-, ,E 0
e,-e

_-:,. w_:otV_:i(t +i:..:; ke), ko" k-W+l-_r > 0

_,,. °

:_....: O,- !k(t),... ,St,(t) 1'
?'..'

,..: Clearly, Zo-n existsIt the failuresisnaturas[8'llO),...,S'i(W-ll],I-I,...,M, are
_,°, •.

_,i: linearly independent. This condition is oquivalent to the statement that there is
_.o,

i_ nmcient informationIna windowoflensthW to dlstingnljamon| allof theM
i'

=!,', possible failure modes, assumln8 that if one of these failures has occurred, it did ,o In

_-" the bestnin8 of the window. A sumelent condition for A to be stable, I.e. the

:_. magnitude of alJ its eilenvalues are less then unity, tad F be invertible is tint either

;:::i O0 or Gw-n is of rank M. (See the appendix for a discussion of the neceasar7 and

"-1 sufkient conditions for the invertibility of 1"and the stability of A.)

;':: As an alternative to the model specificationjust |lven it Is possible to choose other

::r: ldarkov approximations for Aw_i(k). For example, one could match the n4tep

t: crou-covarlance(I<u<W) insteadof matahinstheone-step¢ross-covari_coasin
?

•: 110). The suitability of a criterion for choosin8 the matrices A and F, such as (9) and

_4J (10), depends directly on the failure signatures undor consideration and may be%

,_ exmined as an issue Npmte from the decision rule _eslgn problem. Also, a hijber

; order Marko,eprocess may be used m approximate Aw_t(k). However, the increase

i::. in the computr,tiontl complexity may nesate the bene/_ts of the improved

_i'. approximation. Finely, we emphasize that the statistics /(k), as we have described it

i.

i.
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_ hero, is not an observable quantity. That is, it cannot be computed fnom the rosldueis.

:_ Rather, I(k) 18 an alrtmc,., proeou Introducod In order to obtain approximetioa for

_;, the calculation of the statistics of Aw_l(k). Later In this |KtJon we wall describe a

," ambopdmaJteat stetistiee to rephice Aw_I(k) which hi computable from the rl]duals

_;' and which Is also Mwkov.
!'

:12 UsIn8 the model we have developed for /(k) we can approximate the required

,_ probebilities by substitutin8/(Jr) for Aw_!(k) In the ca_'-ulatioM. That is,
,q

"/... PrlAw_alklESi,flolk-llJ l,rl_Prlilk) E,_,Bo(k-I) J1,_1, j-O,I,...,M, k> W

_i- and

h. _iii.I Prl/(k)ESj, Oo(k-l)lio_.}- Pr[SoOc-l)li,,,) p(/(k)lOo(k-l)i,_')d/(k)

i AamumInll1"-a exists, we have

i'" p(/(k+ 1)l So(k),i,f)

-

i:; _ [p({lk+ 11- (/(k+ I)-A/(k)) I i,_)p(/(k)J So(k- 1),i,_) !dr(k)_. (12)

where p(g0c)Ji,_) is the Gauuian density of C(k) under the failure (i,_). The key

', simplification that results from usin| the Markovianapproximation isL_

',_ p(l(k+l)l/(k),So(k-l),i,v) - p(/(k+l))l/(k),i,v)
-,I

', - p(_(k+l)-/(k+l)-A l(k) JI,_,) ,
|.

_,. Because of this, the intefprandsin (]2) are readiJyobtained (the first comes from the
," I
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previous step of the recurslon) and thus the inteflral8in (12) can be calculated more

,e

In the event that F is not invertlble, the dansit7 for _(k) 18depnarate and (12) 18

more dlflcult to evaluate. As discussed In the 8ppandlx, the invertlbllJtl of F 18

related to the dblinSu18habilityof the M failure medes. Consequently, in any wen.

posed failure clefs©finnproblem, W will be chosen so that the Invertibility ot r is

-J assured.

Nos-V_dow .YequentfMDeclMonlhdes

Here we describe another simple decision rule that has the same decision reflion as

the simplifiedslidin8 window rule (4), but the vector, z, of M-dimensional statistics is
7

obtained dMerently as follows:

z(k+l) - ._z(k) + Br(k+l)

03)
where _, 18a constant stable M x M matrix, and i is a M x m constant matrix of rank

M. Unlike the Markov mod_ /(k) tha_ approximates Aw_l(k), z(k) 18a realizable

Marker proceas driven by the residuals. The advantases of usins z(k) as the decision

statistics are: 1) less storap is required, because residual samples need not be stored

as necessary in the slldin| window scheme, and 2) since z(k) b Markov, the required

probability lntelprals are of the forms (11) and (12) so that the same intelpration

alsorithm can be directly applied. Of course, z(k) is a suboptimal _cision statistic.

One could, if desired, use t hiflher-ordermodel for z(k) so that it more nearly equals

Aw-I (k), but the added computational complexity may nqate the advantejes.
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!_," In order to form the statistlca z(k), we need to choose the luatrice8 _, and i.
• -_o

_ When the failure aillnetures under consideration ere constant blues and M_m, B can

:_;: simply be set to equal (30V-n (provided GOIs of rank ld), and ._ can be chosen to be

,,._ el, whar_ II<a<l. Then, the term Br in (13) provides the correlation of the

_iduels with the sl|neturu as in (2), while the time constant a -I char_teflzu the

memory spun of z(k) just a: W characterizesfirstof the slidin8 window statistics.

More |omen.ally,if we consider the cue where fadlureslsnetures are not constant

biases, trek(G0) <M, or re<M, the choice of _, may still be handled in the same way

i_ u in the previous me, but the selection of _ is more involved. With some lnlilihta

into the nature of the sip_ituv_, • reasonalblechoice of B can orion he made in order

to hive distinct components of z(Ic) reapond primarily to the correspondinj failure.

i_ To illnstrate how this may be accomplished, we will consider an example with two

_- failure modes (1_._'-2)and an m-dimensional r_idual vector. I._t
'.L,

i_ stG:-,) - .8,

82(k-,) - .e2(lE-_r+l)
m-:q

That is, 81 is a constant kiss, and li2 is a ramp. If,el and _2 are ortholional a simple

choice of B is available:

This choice may often be acceptable even when _'l_p_0. It is clearly not of any use

when _ and _2 ere multiples of the same vector _, or when they are scalars

(corrupondiuj to m-l), as the rank of B is tess than 2. In these cases we can

1983023131-TSB12



.-= _,

:" _onsider proeessJnlljroups of residuals. ]Forexample, suppose we batch process every

'_ two residual umples tejether, i.e. we use the aulment_l residual sequence

_" it(k) - [r'(2k,-l), r'(2k)]', k-l,2, .... In thiscue wecansetB to be

-- 5 m i_ 0

_. Thus, thisB is of dimensionld x 2m and hitsrank Id (- 2). The firstandsecondrows

of B captures the constant bias and ramp nature 81 and 112, respectively. The use of

_'_ the modified residual f(k) in this case causes no adverse elect, since it only lenatheF.,_

_.:® sliabfly the interval between times when terminal decisions can be made. Clearlyone

_ can consider further anflm®ntation and batch processinli of the residuals, and in
/

_ii'i |eneral the lo|ical choice of B is one In which each row of B contain in sequence the

initial values of the correspondin8 failure sillnature. In this case the mean values of

" z(k) will exactly equal that of Aw-t (k)for a number of time steps foIIowlnlla failure

equal to the level of auflmentation used. The utility of this approachclearly depends

. on the temporal structure of the failureslanatures. For problems where the sisnatnres
...

-__-i: vary drastically as a function of the elapsed time and the distinjiuishabillty amen8

-.O failures depends essentially on these variations, the effectively of usin_ z(k)

diminishes. In such cases the slidin8 window decision rule should provide better

performance, althouflh it should be noted that in this case one would typicallyhave to
4

use a comparatively Ions window in order to obtain an adequate de_ee of

distinlluishabHity.

l

d

U ,_ ' ,, (7 ,, ,, : " ,_ (O , I _F *
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An sJlorithm baled on l-dimensional OauslJan quadrature rormutu 130,3_] hal

p

I'+_ been developed to compute the problbttity intelrals of (11) and (12) for the case
i+.
i ++

_ M,=2. (It con I_o extended to hilher dimonllon with an Increase in computation+)

The dot©Us of' tbb quadrature aJlorithm is ducrlbed in 122]. Its accuracy haul b_n

UlmlSed via comparison with Most© Carlo simulations (see abe numerical enmpJe in
+/
+t Section 4). With Ibis alsoriti, m we can evaluate Ihe performance probabilities and

risk8 associated with the suboptimal decision rules described above.

In lhe absence of a failure, the conditional density For/(k) (12) hu been observed;.

in numerous oxamplu to essentially reach a steady-state at some finite lime T> W'.

Assuminl thi+ is the case, we have for k_+'_T,

Prll(k)ESjlSo(k-l),O,-} - _j (14'_+

Pr[/(k)ESj,/(k-l) ESo,...,I(+)ESoISo(+- l) ,i,+}- hi(k-el i)
(IS)

That is, once steady-state is reached, only the elapsed time since failure is

important. Generally, failures occur infrequ++ntly, and decision rules with low false

alarm probability are employed. Thus, it is reasonable to assume 1) p<<l, i.e.

(l-p)-Iml, and 2) Pr{80(T)J 0,-)ml. The sequential risk associated with (4) for

M- 2 can be approximated by

2
uW(F)- P,L__ �(I-PF)_a(1) _ _ It(1) �L(i,j)]bj(tli)

i-t J-t t-O (16)

where

• Unfortunately,we haveout beenable to provesuchconversencebehaviorustol elementary
techulques.Moteadvancefunction.theoreticmethodsn_; benecessary.



,

:.. O-p)(I-be)
Fr- 1-0(1-p)

2._. Pp is the unconditional false alarm probability, i.e. the probabilityof one f4dso8kurm

over all time.

Next, we seek to repleee the infinite sum over t in (16) by the anita mumup to

_'. t-Q plus a term approvdmatin8the remainder of the inhlte sum. Suppose we lutve

.-. been _plin| for Q _ mlncoa railu_ o_n_l. DeArie

"" PtOlt) - PrlKt)ESjlSo(t-I),i,0}, j-0,1,2
oj

-_. If we stop computin8 the probabilitiesafter Q, we may approximate
qo

":- Pt(jJl) _- PQ(jIi), j-0,1,2, t>Q
07)

L._ That is we assume that after a detection delay of Q steps the conditional probability of

-., detection at any time jivon medetectionat any previoustime reachess constant

steady-statevalue. This is the sameasassumingthat beyondQ stepsof delay, the
o

_': additional detection delay is exponentially distributed. This u8umption is reasonable

-. for constant failure slanatures or signatures that reach steady-state. While the

.. assumption may not be valid for sianaturas which continue to vary, the effect of this

approxlmaUon is senerally quite small, since for all i and j one tl_ie,olly am choose Q

4 so that

" bj(tJi) _ 0, t>Q

4 That is, for each fai,turemode the probabilityof a detection delay 8reater than Q steps

:: is nejllslble.

.4
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;./, Substltutin| 117) in (161, we obtain

::.., u.,'(o- iLooj)]
r%
,, I-I J-I (18)

vhere

,+, '_ - (till +Qbo(Qli) + i_po(ol i) (19)
%

Po(ill)
" POJ)- bl(tlll+bo(QIl)1_1)Q(010... we (201

+ "i'_ Here, _ is the conditiomd expected deby to decision, liven that • typeI r_,lur_hu

,-+.:" occurred, and P(Jl1) is the conditional probability of deehtrinl • type j failure, liven

i,_- that Failure1 has occurred. From the assumption that PrB0(T)I0,-}----I end the_"

_!_ 8toad_-statocondition (14), it am be abown that the mean time between false ahurm8
•_

_.., is simply ()-be) -I. Now ell the probabUitie_in (18)-120) can be computed by nsinl

our quadratureallofltlun, lqoto that the risk expression (18) consists only oF finite..

_. sums and it can be evaluated with • reasonable amount oFcomputational effort. With
*+

": such an epproximetion oF the sequential risk, we are able to consider the problem oF

determininl the decision relions (i.e. the thresholds tj's) that minimizes the risk.

!t. '

_-+ It should be noted _et ve could consider e&o_in8 • set of thresholds thtt

+i-'l minimites e weilbted combination of certain detection probabilities (P(i_j)), the

__i+,, expected dehty (_), and the mean time between false alarms (l-be) -I. Althoulh

_;_ such an objective Functionwill not result in e Bayesian desijn in leneral, it is • valid
_ desiln criterion thst may be useful for some spplications.
'4 "

i _,)'

I "_ -':-/"+i y_+:__+ - " '' ', _,_ +_-.+++_ "_.; * + "-+'+ ,'+" -" +_'_+'-" '-" -" -+ ._ " -* _ _+-. +_.++Y_- * _'-- -'+"- +" _ ,+ _ '" "',S _- " -:" " " + +, <+'_i ++" ........... ++ - ........
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: The riskmlaimiutlea hm me feeturmthatdeeervu epodd ettantlon.Firm,the

__: Nquanthd _ Is not • simtde fun_oa of the thruhold t, wd its derivative0 with

-_ rupecl to f b not readilyevailable. Second,almletinl the rbk Is e wmpntationdly
inWJvo _lk. Therefore0 the mbimum-_8 _um W _ _ must _lui_

for function eveluetions, and It must not require derivatives. For these reasons we

chose *" _ rite Sequenco-of-Quodre_-Proenm| (SQP) ol|ortthm studied by
.j
i:: Wide_ [321 to solve this problem, beatuso it does not ooed any derivative

information end It appoer8 to l_luJrs fever fua_ evelutions thsn other yell-

-: known algorithms [32]. Furthermore, the SQP is simple, and it has quadratic

:. converpnco. Yery briefly, the alSoNthm consists of the foUowine. At socJt jtop of

the |tertLLon, a quadratic surface is rifted to the risk fun_on locally nsin| the
"

p_in| __ at the optimal value of f and the _rrupondin8 risk function
o

evaluations. The resultin| quadratic model is minimized over a constrained reeion
--,_i (hence the neme SQP). The risk function is evaluated at this minimum end is used in

• the surface lttin| of the next iteration. The details of the application of SQP to risk

minimlzetion is reported in [221.

......... _ ........... .... _.... _,_- ................. ..............................._-_ .... o ./ ,, o ,,, ,_ - _,, ,_-_ • ,
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""" 4. DIUIIrIiIUCAL

Nov we dlanns0 am appllatlon or the mnboptlmadrub doolammothodolo_

' _""- dovolopod In thh st. Wo conad4ortho doto_ion of two poadble fadlurenode

_ (withoutldontlf_Jll tho radiumtitan). Tb residud _ a 2.dlmondosadyes•or, end tho

_,_:. _oetor hUure a_turu, fk(t), 1-1,2, amfun_ons of _ okpeo titant m shown in

_ Tshle 1. Tho slsneture ot tho finn tadlure is dmply • cena_mt vector. Tbo first

;J,_.. an•portent ot 82(t) b • aonstent, whib tho second an•portent is • ramp. Wo luvo

. _oaen to oxamino these those types of' adlputuroJbeams• thoy dereat•pie end

_ descrtbo• kujo vsrio_ ot •adjureadalntmre8that arecommonJ_seen in _. Por
•-.-:. I_nmpUc_ltT,we have chosenY, the cevsrienceof r, to bo tholdontit7matrix.

,__-_: Both • simplihd 8lidinll window rule (that uses "%v-n)end • rule usin8 the

. lderkov statisticz woreextminod. Tho panmotors essoc_d with AW_l,/, end zero

',_':'_ shown in Tshle 2, end the cost functionsend the priorprol_bility8re shown in Tabin

i_ 3. To f•cilittte discussion, we introduce the followin8 torminolojy. We refer to •

Monto Carloaimuletionof the slldinllwindow rule b_ SW, • simuletionof the rule

•" usin8 the Merkov 8t•tistl©z 8s Merkov ImplementaLlon(MI), end • simuletlonot the

non-implement•hie decision process ueinS the •pprezimation ! am Merkov

.-" Approxlm•tion (MA). (All simuhttions ere buod on 10,000 trs_jectories.)The
'_.

_ O notation Q20refers to tho resultsof •pplyinfl the clu•dreture adllorlthm to calculatethe

vtriou8 performanceindices of tho slldin8window rule while usin| I to •pproxim•te
t_, ,,

'. Aw_a (12).

" The results ot SW, MA, end Q20 for the thresholds [8.85, 12.05] ire shown in

.-- Pillures2-6 (an• (15) for the definitionof'notttion). The qutdrJtureresultsQ20 •re

_o
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_" very cloN _o thoa obtained by Monte Carlo simulations forMA, btdlemtir,8 the

.!_ oxooHeat scuraL7 of the quadrature Idsodthmo In comj_tln8 SW with MA, It hi
I!,°'

, ". evident that the Morley approximation sJJllhtJyundor4stimates t_o tldso IdrArmrate ott?:
, the didln8 window rub ($W). However, the response of the Msrkov w_proximstlon
N
._ to failure Is very close to that of tha slidin8 windowrub. In the present example,s,

_,:i- Aw-a b a 7-th order _c_, wldlo its ap_mtion I b _IIF of llr_ order. In view

_ ot this tact we curt conclude that ! provides a very touchable mad useful

_.: approximsUe._of Aw-I.

The successive cboiu,s of thresholds by SQP tot the sildin8 window rub are
_: 2 plotted in Fisure 7. Note that we have not curriedthe SQP alsorithm so far that the

_i': successive choices of thrusholds are, say, within .001 of each other. Thb is becanso

,_._'.,_ near the optimum the expected risk is relatively insensitive to small chenses in t.

_i This implies that the scale optimization is not llenaraW7wortkwhile. This conclusion

is supported by the Fact that the reslduld siSnatur_,models used in deslpJnll failure

!_ detection systems ere typically idealizations, und thus minor improvements in Btyes

"I risk is llenerally an artifact ot the mathematical formulation. Furthermore, it should

_?_O be remembered that the use of the Bayes formulation i_ s_ply for the purpose of

; pfovldinll a mechanism/or determininli hijh.partormence decision rules, end thus the
! '_° °

_'_ precise optimization ot the Bayes risk is not the central issue. In tact, the costi;e

i; partmeteraL, c, p, end W should be used as desip parameters. In the event that the

'_* optimal thresholds resultln8 from a particularchoice of Bayes risk do not provide the

!_ _ desired detection perfo_mence, the desip parameters may be adjusted end the SQP

_. may be repeated to set a new desip. A practicalalternative method is to make use of
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o

tin _ of performanceIndices(e.8. P(IJ)) that m |anolated in the flilkcaJuJs",lon,

_:_ and aSOON a pair of' tbruhold8 that 7iolds the doelrod pedormanaJ tnldooE.

The portormancoot the derisionado uabs Aw-n and s 8 determinedby SQPan

:_ 8hovn In Plapnros8-12. (Thethresbokls for Aw-I an [1.85, 12.0$] and then for z auro

(6.19, 11.69|.) We non, that Mi bu s Idsber fadNadermratethan SW. The speeds of

detection for the two rules ere admihur, While MX boa a ailsbtly hasher type 1 correct

!

detection probability (_bn(sJll) than SW, SW has at consistently basher type 2
e,,4

t

correct detection probablUty (_b2(sJ 2) then MI. By raisin8 the thresholds or the!12 o-o

rule asia8 z atppropthttel),, we cam decrease the f'aise 8harm rate oF M! down to that of'

" SW with am increase in detection dole7 and slif_tly improved correct detection

probability for the type 2 failure. Thus the adidin8 whtdow rule is sllqlbtly superior to

the rule nsht8 z in the sense that when both ere desisned to yield a comparable false

._ alarm rate, the latter will have Ionter dotec_on delays end a 81ilhtly lower correct

detection probabJJity for a type 2 failure. In view ot the fact that a decision rule nsinll

z is much simpler to implement, Ltis worthy of beans considered as an adteruative to
e

the slidin8 window rule.

'_ In summary, this example illustrates the utility of our approach. The quadrature

19 aJ8orithm hu been shown to be accurate and useful, and the Merkov approximation

of ,%w-I by I is at redid one. The simplicity and usefutnes ot the SQP adsorithm have

adso been demonstrated. Finally, the Marker decision statistic z hu been shown to be

atworthy adternatlvo to the slidin8 window statistic ,%w-n.



.. i, OOMCLUMION

_._-" A aonpu_tJle_ud¥foulldt mo_odnlo87 broodon tl_ IJsyoelmep_ bm boon
._

.._ dovoJopod for deel8nlnj ambopllmad Nqumthd doetsJoan rules for PDI, This

_,_ motbodolou wm atpldlodto • sueriud oxamlde, sad Ibo results intdla_lohi It b •

potontl_J_uae_l dmtsnepprowh.
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.+: APPlHDIX
_J

_] Thrum

?: Consider tho Qsuu-Mukov prome8/(k) 8poeUledby (8)-(10) in Section 3.1. Olvon

BiAv.l(k)A'v_101:))-7q> 0,, A _ st best ono uity oJllenvaluo and r b evJml,,

i!. positlvodofialteit andonl_it thoreoxlstId.vectorse_0 andjJ#0 suchthat
•p,,

_i +]''_ a'O, - .8°Oj..o,n,I-0,...,W-2

•" e'Ov_n - 0 (A21

,_ /1'(3o - 0 (All

Ih,_t

"/_:_ Lot

,+
+:' ' + I[ 1
_,- 3[I
)_'" i_, i IZ [A w_t(kl,A w-ilk 111 -u. w-t Oc o

= _ Ulinl the transformationT
%

+ I,_.. T- I
+'4 'IZO -

%+,

}i" we obtain
_-- +tp+"

)%

:'I. TiT' "

i_:" Since T is full rank and _>0, Z and r' are semi-positive definite if and only if there

_)O are non-zero M-vectors a _d _ such that

_..

l_:.at •
+. , . + , _....................

', . - + +'_.............................. .......................... :_+

....... _+ _..:++ ;+ +__ + _ +,+:... _ _++ -. -+_ _ _ _ . - + . _ -. +_,_ ? ++ + _. ..... . .+ _+. _ .., - + . , . .j , -.... .. + ,, +. + _ -
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-- a,Aw_I {L.+II - _'AW.l(kl
(A4)

"--t

" w_lO.V"lr I_-" Aw-100 - 0c-W+l+s

_; TknWom, (A4I is equiv_dmtto theco_litioml (All-(All. From (|l, weobUdn

_ --A_A' �r

-. It follow8thatA onlyhu elseuvaJuuof m_nltudeelea thanor equaltounity,andit

hid at bast one unity edjenvalua if and only 1t' r is semi.positive definlt_.

Q.x.b.

Suppose all sisn•tures vanish for elapse thnm 8reater than W-l, i.e. Ik(t)-0, for

t>W-l, -rid i-I,...M. Then, (AI)-(AI) are equivalent to the condition that it is not

poasible to distinsuish between • failure occurrin8 at • certain time and failures

occurrtn8 one time step earlier or later. Moreover, (AI)-(A3) indicate that only •

special dim of' failure sisnatures would satisi_ this lndbtinsubhabUlty condition for all

value of' W. Qenerally, l_ is possible to choose • sumciently lar|e W so that this

situation is •voided.
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:_ Tabl,2. rme_ topAw-,,!,_d z.

',] _._.

L(1,2)- L(_,I)- 10, L(1,1)- L(2,2)- O, LF- 9

:_ T - 8, Q - 8, p - .0002

p(l,_) - .$p(l-p) '-I, 1- 1,2

_:_ Table3. Cost FunctionsandPriorProbability.a
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Plsure 1. SequenthdDecision Reslonl in 2 Dimensions
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